Synthesis and Nonenzymatic Template-Directed Polymerization of 2′-Amino-2′-deoxythreose Nucleotides

نویسندگان

  • J. Craig Blain
  • Alonso Ricardo
  • Jack W. Szostak
چکیده

Threose nucleic acid (TNA) is a potential alternative genetic material that may have played a role in the early evolution of life. We have developed a novel synthesis of 2'-amino modified TNA nucleosides (2'-NH2-TNA) based on a cycloaddition reaction between a glycal and an azodicarboxylate, followed by direct nucleosidation of the cycloadduct. Using this route, we synthesized the thymine and guanine 2'-NH2-TNA nucleosides in seven steps with 24% and 12% overall yield, respectively. We then phosphorylated the guanine nucleoside on the 3'-hydroxyl, activated the phosphate as the 2-methylimidazolide, and tested the ability of the activated nucleotide to copy C4 RNA, DNA, and TNA templates by nonenzymatic primer extension. We measured pseudo-first-order rate constants for the first nucleotide addition step of 1.5, 0.97, and 0.57 h(-1) on RNA, DNA, and TNA templates, respectively, at pH 7.5 and 4 °C with 150 mM NaCl, 100 mM N-(hydroxylethyl)imidazole catalyst, and 5 mM activated nucleotide. The activated nucleotide hydrolyzed with a rate constant of 0.39 h(-1), causing the polymerization reaction to stall before complete template copying could be achieved. These extension rates are more than 1 order of magnitude slower than those for amino-sugar ribonucleotides under the same conditions, and copying of the TNA template, which best represented a true self-copying reaction, was the slowest of all. The poor kinetics of 2'-NH2-TNA template copying could give insight into why TNA was ultimately not used as a genetic material by biological systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of N3′-P5′-linked Phosphoramidate DNA by Nonenzymatic Template-Directed Primer Extension

A fast and accurate pathway for nonenzymatic RNA replication would simplify models for the emergence of the RNA world from the prebiotic chemistry of the early earth. However, numerous difficulties stand in the way of an experimental demonstration of effective nonenzymatic RNA replication. To gain insight into the necessary properties of potentially self-replicating informational polymers, we h...

متن کامل

Efficient and Rapid Template-Directed Nucleic Acid Copying Using 2′-Amino-2′,3′-dideoxyribonucleoside−5′-Phosphorimidazolide Monomers

The development of a sequence-general nucleic acid copying system is an essential step in the assembly of a synthetic protocell, an autonomously replicating spatially localized chemical system capable of spontaneous Darwinian evolution. Previously described nonenzymatic template-copying experiments have validated the concept of nonenzymatic replication, but have not yet achieved robust, sequenc...

متن کامل

Activated Ribonucleotides Undergo a Sugar Pucker Switch upon Binding to a Single-Stranded RNA Template

Template-directed polymerization of chemically activated ribonucleotide monomers, such as nucleotide 5'-phosphorimidazolides, has been studied as a model for nonenzymatic RNA replication during the origin of life. Kinetic studies of the polymerization of various nucleotide monomers on oligonucleotide templates have suggested that the A-form (C3'-endo sugar pucker) conformation is optimal for bo...

متن کامل

The use of non-natural nucleotides to probe template-independent DNA synthesis.

The vast majority of DNA polymerases use the complementary templating strand of DNA to guide each nucleotide incorporation. There are instances, however, in which polymerases can efficiently incorporate nucleotides in the absence of templating information. This process, known as translesion DNA synthesis, can alter the proper genetic code of an organism. To further elucidate the mechanism of te...

متن کامل

DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells.

A novel DNA polymerase has been identified in human cells. Human DNA polymerase mu (Pol mu), consisting of 494 amino acids, has 41% identity to terminal deoxynucleotidyltransferase (TdT). Human Pol mu, overproduced in Escherichia coli in a soluble form and purified to homogeneity, displays intrinsic terminal deoxynucleotidyltransferase activity and a strong preference for activating Mn(2+) ions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014